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Rigidity transition in two-dimensional random fiber networks

M. Latva-Kokko, J. Ma¨kinen, and J. Timonen
Department of Physics, University of Jyva¨skylä, P.O. Box 35 FIN-40351 Jyva¨skylä, Finland

~Received 10 July 2000; published 28 March 2001!

Rigidity percolation is analyzed in two-dimensional random fibrous networks. The model consists of central
forces between the adjacent crossing points of the fibers. Two strategies are used to incorporate rigidity: adding
extra constraints between second-nearest crossing points with a probabilitypsn , and ‘‘welding’’ individual
crossing points by adding there four additional constraints with a probabilitypweld , and thus fixing the angles
between the fibers. These additional constraints will make the model rigid at a critical probabilitypsn5pc

sn and
pweld5pc

weld , respectively. Accurate estimates are given for the transition thresholds and for some of the
associated critical exponents. The transition is found in both cases to be in the same universality class as that
of the two-dimensional central-force rigidity percolation in diluted lattices.
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I. INTRODUCTION

Scalar percolation@1# is a simple model describing th
transfer of a scalar conserved quantity, e.g., an elec
charge across a randomly diluted system. In two dimens
the geometric exponents of connectivity percolation
known exactly@1,2#. Elastic percolation is not, in genera
equivalent to scalar percolation. This was first discovered
Feng and Sen@3#. Since then, considerable attention has be
given to the classification of rigidity transition in elastic sy
tems. If angular forces are present, only singly connec
paths are required for rigidity and hence the geometric pr
erties of the elastic backbone are exactly the same as tho
the scalar percolation problem@4,5#. In central force systems
@3,6–21#, the singly connected paths are not enough to
sure rigidity. For a long time the only approach used in t
problem was to directly solve the elastic equations@6–9,22–
24#. The concepts of rigidity percolation such as zero-ene
motion ~or floppy modes! and constraint counting, have bee
used for disordered materials such as glasses@25–29#. Re-
cently, numerical algorithms~matching algorithms! @11–16#
based on graph theory have made larger system sizes a
able for simulation. The use of these algorithms has give
new insight into the nature of the rigidity transition. Rigidi
percolation has been studied with matching algorithms
diluted lattices@12–14,18,30#, Cayley trees@18,19,21#, ape-
riodic lattices@20#, and random networks@17#. Directed ri-
gidity percolation has also been studied@31#. The objective
of this paper is to study the off-lattice rigidity transition in
random network, and to classify in this case the transitio

The two-dimensional random network is a geometri
structure. It can be used, e.g., to model planar structures
are composed of randomly positioned thin linelike obje
~e.g., fibers in a sheet of paper!. The statistical properties o
this kind of two-dimensional~2D! random networks are wel
known @32#. To understand the multiple connectivity of suc
a random network, one can calculate@32# properties such as
the average number of crossing points per fiber, the num
of polygons in a network, and the average number of side
a polygon. In our model, the 2D fiber network is genera
by randomly placing 1D objects of equal length on a plane
that bothx andy coordinates and the orientation angles of t
1063-651X/2001/63~4!/046113~10!/$20.00 63 0461
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fibers are taken from a uniform distribution. We use perio
boundary conditions in they direction, and a box of linear
sizeL plus one fiber length in thex direction to minimize the
boundary effects, and to keep the fiber density unchange
the boundaries. Figure 1 shows a typical 2D random n
work.

A system is rigid if it cannot be deformed without chan
ing its energy, i.e., if any small deformation of the syste
has a nonzero response. A system is nonrigid or floppy
can be continuously deformed without change of energy. T
number of~linearly! independent motions that do not co
energy is called the number of floppy modes of the syste
In a central-force network one can write the energy of
system in the form,

E5
1

2 (
i , j

@~uW i2uW j !•RW i j #
2ei j . ~1!

For the energy to be minimized, we require]E/]ui50 for
; i , which is necessary for the equilibrium configuration
the network. If one deforms the equilibrium configuratio
and solves the resulting set of linear equations, the numbe

FIG. 1. A typical 2D random network with densityq52qc ~see
text for the definitions ofq andqc).
©2001 The American Physical Society13-1
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floppy modes is the number of degrees of freedom minus
number of linearly independent constraints in the system

Although rigidity and the rigidity transition can, in prin
ciple, be studied with dynamical methods, rigidity is a sta
property. The dynamical methods have proved to be inef
tive in rigidity analysis because of the restrictio
@6–9,22,23# on the size of the system that can be analyz
The idea of generic rigidity@12,13# solves some of thes
problems. In generic rigidity the geometrical singularitie
i.e., pathological configurations, are ignored, and constr
counting is used for calculating the degrees of freedom
the number of independent constraints in the system. A
dom network is inherently generic because the random c
struction eliminates any possibility for a geometrical sing
larity, i.e., the probability of geometrical singularities is zer
The simplest argument used@14,33# by Maxwell to check
whether a system is rigid was to calculate the number
floppy modes as the difference of the degrees of freedom
the number of constraints~i.e., all constraints are assume
independent!. If the number of floppy modes of a
d-dimensional system is less than or equal to the numbe
collective motions of ad-dimensional body, the system
rigid. To map the redundant constraints, one needs to ch
this property for every subset of the system. This can
done using recursive matching algorithms, one version
which, due to Jacobs and co-workers@12,16#, is called the
pebble game. This algorithm calculates the number of flo
modes, maps the overconstrained regions, and identifie
rigid clusters in a 2D generic bar-joint network.

We study the rigidity transition in fiber networks usin
the concepts of generic rigidity. This is done to gain bet
insight into the statistical properties of the fiber networks t
depend upon rigidity. Generic models are used to better
timate the number of floppy modes and the number of ov
constraints or the amount of stress bearing parts in such
works. In real systems that can be modeled by rand
networks, the amount of fibers is huge~at least of the order
of 109), and the dynamical methods would be impossible
use. The typical applications for these networks include, e
the mechanical@17,32# and transport@17# properties of paper
sheets. Here we are mainly interested in the amount of st
bearing regions and in the sizes and shapes of these re
especially near the rigidity transition.

II. METHODS

In the analysis of rigidity in 2D random fiber network
we use here a matching algorithm, more specifically
pebble game by Jacobs and co-workers@12,16#. This algo-
rithm maps the overconstrained areas and determines
number of floppy modes in the system. It basically represe
the degrees of freedom in a system with pebbles. Onc
degree of freedom is bound, a pebble is bound, and he
one can keep track of the rigidity in a recursive fashion.

The simplest way to realize an elastic random network
to replace each crossing point with a mass point, which
two degrees of freedom in two dimensions, and each nea
neighbor connection with a Hooke spring, i.e., a single c
straint. The simplest nontrivial rigid structure is now a t
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angle, and a network constructed of triangles would be rig
Because only two fibers can cross at a single point~the prob-
ability of more than two fibers crossing at the same poin
negligible!, in the network constructed of springs and ma
points, rigidly connected triangles can never percolate
the network will not be rigid at any finite density@17#. More
constraints must therefore be introduced in the network
order to make it rigid.

There are several ways by which rigidity can be intr
duced in a random spring network. Of the possible mec
nisms, one should choose those that are relevant for phy
applications. It would be desirable, e.g., that the structu
such as those in Fig. 2 would be rigid. If the long vertic
lines in this figure were rigid, i.e., would not bend witho
cost of energy, the structure would indeed be rigid. This c
be accomplished by adding extra springs along a fiber~line!
between second-nearest-neighbor crossing points. An a
native strategy would be to weld crossing points, i.e., to
the angles between the crossing fibers at some points.
first of these strategies corresponds to a situation in wh
the fibers become stiff but are still able to orientate fre
relative to one another. This happens if cohesion inside~or
equivalently on the surface of! the fiber is larger than the
forces between the fibers. The welding strategy correspo
to a situation in which two bonded fibers cannot move re
tive to one another but can still bend. The formation a
drying of the paper web in the paper making process i
combination of these two mechanisms but typically the o
entational~i.e., welding type! mechanism is dominant. Othe
random networks could have a stronger tendency for s
ness. The first of these strategies turns out to be easie
implement for large systems. We also get better statistics
this strategy.

We generate a random network by randomly placingNf
fibers of lengthl in an area ofL3L. We use as a contro
parameter the density of fibers,q5Nf /L2, and denote byqc
the density at the connectivity-percolation threshold. Whe
random network is generated, we add a simple constr
between each of the nearest neighbors, i.e., replace the
segments connecting the crossing points with springs.
first study the rigidity transition in the random spring ne
work of a given density by adding there second-neare
neighbor constraints with a probabilitypsn . This will make

FIG. 2. ~a! A structure in the random spring network that shou
be made rigid.~b! The second-nearest-neighbor strategy in wh
adding ofsnn bonds makes the vertical fiber rigid against bendi
and ~c! the welding strategy in which adding of four extra bon
~dashed lines! will make the angles between the crossing fibers st
3-2
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the system rigid at a certain probabilitypsn5psn
c . The tran-

sition probability is evaluated by checking the existence o
rigid cluster that would span across the whole network fr
left to right. This is done using a fictitious bond between t
left and right sides of the network and checking its redu
dancy@15#. As psn is increased, we monitor the sizes of th
rigid clusters and the change in the number of floppy mod
When the transition probability is reached, we check
number of cutting bonds, i.e., the bonds that cannot be
moved without loss of the rigid backbone, and the sizes
the isostatic, i.e., minimally rigid regions connected to t
backbone.

We also study the rigidity transition in the random spri
network using the welding strategy. After generating
nearest-neighbor random network, we add four additio
constraints at crossing points with a probabilitypweld . These
constraints will make the system rigid atpweld

c . We evaluate
this transition probabilitypweld

c and monitor the size of the
rigid backbone as a function of linear system sizeL.

We have checked whether the concepts of generic rigi
apply by calculating the number of linearly independent c
straints directly from the rigidity matrix. If one does not u
additional constraints~i.e., only nearest neighbor bonds! the
number of floppy modes as calculated from the rigidity m
trix is the same~small deviations are possible by, e.g., 1
linearly dependent bonds, but these only constitute at m
0.1% of all bonds! for small systems@(1 –5)3L5100
21500 crossing points#. For the welding strategy this is als
true for welding constraints. This gives us a reason to beli
that the concept of generic rigidity is applicable. For t
second-nearest-neighbor bonds, we have to assume gen
ity in the network, i.e., that the crossing points along a fib
cannot lie on the same line or they are linearly dependen
one assumes genericity and deviates the coordinates
slightly, the rigidity matrix and the pebble game already g
the same answers and generic rigidity is applicable. W
second nearest neighbors are added in straight fibers
fibers are left shaky~i.e., they are not first-order rigid!. If we
accept the idea that the function ofsnn bonds is to make
fibers stiff, we can use in a straightforward fashion gene
rigidity.

III. RESULTS

A. Maxwell counting

Once we know the topology, i.e., the connectivity of
random network, we can calculate its number of flop
modes. A surprisingly good estimate for the number of u
bound degrees of freedom~floppy modes! is given by the
simple constraint counting, Maxwell counting. Maxwe
counting neglects the possibility of constraints being dep
dent, every constraint is assumed to bind one degree of f
dom.

If there aren crossing points on a fiber, there are 2n
degrees of freedom associated with these crossing points
these degrees of freedomn21 are bound since there aren
21 central-force constraints on such a fiber. Each fiber
two end segments. These have four degrees of freedom
04611
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which two are always bound. Finally, every crossing po
connects two distinct fibers so the number of unbound
grees of freedom per fiber is

2n

2
2~n21!142253. ~2!

A network without any additional constraints and withNf
fibers has 3Nf unbound degrees of freedom. Every addition
constraint binds one degree of freedom. If we add seco
nearest neighbor bonds with some probabilitypsn , there will
be

(
r 53

`

psnrnr ~3!

such constraints. Herenr is the number of fibers withr cross-
ing points. Hence the number of floppy modes,

F53Nf2(
r 53

`

psnrnr53Nf2psn̂ r &Nf53Nf22psnNc ,

~4!

where^r & is the average number of crossing points on a fi
andNc is the total number of crossing points in the netwo

The number of crossing points is@32#

Nc5
~Nf l̄ !2

pA
, ~5!

where l̄ is the average length of a fiber. As all the fibers ha
equal length we can setl̄ 51 and as the density of fibers i
q5Nf /A, whereA is the area of the system, we find that

Nc5
Nfq

p
. ~6!

Hence the number of floppy modes per degree of freed
can be expressed in the form

f 5
F

2~Nc12Nf !
5

3

2q

p
14

2
1

2p

q
11

psn ,

psn!psn
(c) . ~7!

Above the rigidity transition, the behavior ofF is depen-
dent on the end nodes since the degrees of freedom as
ated with these are bound only if there is ansnn constraint
between the end node and its second-nearest neighbor.
number of these constraints is 2Nfpsn . As the fiber ends
have 2Nf unbound degrees of freedom, we getF52Nf

22Nfpsn for psn@psn
(c) and consequently,

f 5
1

q

p
12

2
1

q

p
12

psn ; psn@psn
(c) . ~8!
3-3
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The number of floppy modes per degree of freedom,f is
plotted in Fig. 3.

Maxwell counting gives a first estimate for the transiti
point psn

(c) . The two trends linear inpsn , Eqs. ~7! and ~8!,
cross atpsn5psn

(0)'psn
(c) ,

3Nf22Ncpsn
(0)52Nf22Nfpsn

(0) ~9!

and thus we find that

psn
(c)'psn

(0)5
Nf

2~Nc2Nf !
5

1

2S q

p
21D . ~10!

This estimate turns out to be increasingly good for increas
~Fig. 4! q. It is evident that this estimate cannot howev
hold at low densities. Ifq,qc (qc55.71 being the critical
density in connectivity percolation@30#!, there cannot exist a
rigid percolation cluster since there does not even exis
connected percolation cluster. If, e.g.,q.3/(2p), Eq. ~9!
would imply psn

(c),1 and we would have a rigid percolatio
cluster.

FIG. 3. Number of floppy modes atq54qc . The solid line is
the Maxwell-counting estimate and the dashed line the largepsn

estimate. The crossing point of these two linear trends gives a
estimate for the transition point.

FIG. 4. Comparison of the Maxwell-counting estimate and
actual transition point evaluated numerically. The circles are
transition points and the solid line the Maxwell-counting estima
The error in the transition points is smaller than the size of
circles.
04611
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It is possible to find by Maxwell counting an estimate f
q5qmin below which there will not exist a rigid percolatio
cluster. For connectivity, each fiber has one degree of fr
dom ~connected or not! and each crossing point binds on
degree of freedom. Hence, at the transition we get

Nf5Nc5
Nfqc

p
⇒qc5p ~11!

~more accurately@34#, qc55.71). This underestimates th
critical density because many fibers in the percolation clu
at qc are multiply connected. For rigidity, each stiff fiber~all
snn bonds present! has three degrees of freedom~two trans-
lations and a rotation! and each crossing point binds tw
degrees of freedom,

3Nf52Nc5
2Nfqc

p
⇒qmin5

3

2
p. ~12!

This estimate underestimatesqmin because it supposes th
all constraints are independent and overestimates it bec
it supposes that all the degrees of freedom need to be bo
for a spanning connected network. The estimateqmin5 3

2 p is
definitely an underestimation because thenqmin,qc , which
is not possible. A next guess would be thatqmin5 3

2 qc be-
cause then the estimate for rigidity would fail by the sam
factor as that for connectivity. Atq5qmin we would have
psn

(c)51. So forq5 3
2 qc , psn

(c) should bepsn
(c)51 but Eq.~9!

indicatespsn
(c)'0.29.

B. Characterization of the rigidity transition

It is still unclear under what circumstances rigidity tra
sition is continuous and when it is of first order. In the Ca
ley tree@18,19,21# and in the square lattice@18,30# with pe-
riodic boundary conditions, addition of diagonal bonds lea
to a transition, which is of first order. In compact 2D bon
~or site! diluted lattices, e.g., the triangular lattice, the tra
sition seems however, to be continuous, and in a differ
universality class than connectivity-percolation. At low de
sities~above the connectivity-percolation threshold! the tran-
sition is continuous in random networks regardless of
strategy used.

In the limit of infinite density, the random fiber network
statistically similar to the square lattice with a dilute rando
distribution of diagonal bonds@32#, so in this limit the tran-
sition could be expected to be of first order. The reason
the similarity of the random fiber network and the squa
lattice with diagonal bonds is that, at infinite density, th
average coordination of nearest neighbors and average c
dination of second-nearest neighbors become four~the latter
are diluted in both strategies!. Although the square lattice
with a dilute random distribution of diagonal bonds w
shown to have a first-order transition@18#, it is unclear what
happens in random fiber networks at high but finite densit
We have been able to reach reasonably reliable results
densitiesq,10qc . Higher densities are problematic becau
of the large number of crossing points, e.g., atq520qc , a
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RIGIDITY TRANSITION IN TWO-DIMENSIONAL . . . PHYSICAL REVIEW E 63 046113
network of size 100 fiber lengths3 100 fiber lengths has 41
million crossing points.

When analyzing the nature of a transition, an obvio
quantity to check is the free energy, i.e., whether its fi
derivative is continuous or not. As the free energy associa
with the rigidity transition can be taken@14,21# the number
of floppy modes in the system. The problem with this a
proach is that a possible discontinuity only appears
L→`. If the transition is continuous, the number of flopp
modes should scale asf ;up2pcu22a, wherep is some prob-
ability of occupying a lattice, or a density in some approp
ate space, so the second derivative of the floppy mo
should in this case scale as

d2f

dp2 ;up2pcu2a. ~13!

The order parameter will be discontinuous if the transit
is of first order. The order parameter@14# is in this case the
probability to belong to a rigid percolation cluster. If th
transition is continuous, the order parameter will scale a

P`;~p2pc!
b, p.pc . ~14!

In this case of continuous transition, the percolation cl
ter at the transition threshold will also be statistically se
similar with fractal dimensionalitydf,2. If the transition is
of first order, the percolation cluster will scale at the tran
tion threshold with a Euclidian dimensiond52. So for a
continuous transition, the mass of the percolation cluste
the transition threshold will scale as

M pc
~L !;Ldf , df,2. ~15!

Also the correlation length behaves differently near
transition threshold for a first-order and a continuous tran
tion. In a continuous transition the correlation lengthj di-
verges at the transition threshold such that

j;up2pcu2n. ~16!

C. Correlation length

All the results quoted here are for thesnn strategy unless
otherwise stated. The correlation length gives the typical
ear scale within which two mass points belong to the sa
rigid cluster. It first increases with increasing number of a
ditional constraints as larger and larger parts of the sys
become constrained. For example, a square consistin
mass points connected with Hooke springs has one flo
motion in which all the four mass points participate. Onc
certain threshold is crossed, the redundancy of constra
becomes so high that floppy modes become isolated a
and the correlation length begins to decrease. This hap
when parts of the system become overconstrained or ri
On the other hand, one could also consider the size of
typical overconstrained cluster that does not belong to
percolation cluster. The average size of distinct rigid clust
first increases with increasing additional constraints
when the percolation cluster is formed, the individual rig
04611
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clusters merge with the percolation cluster as additional c
straints are added to the network.

We use here an indirect way to determine the correlati
length exponentn. If the probability of finding a percolation
cluster at a probabilityp of additional constraints is consid
ered, the correlation-length exponent can be found in t
ways. First, the highest value of the first derivative of th
probability scales asL2n. On the other hand, the standa
deviation of the critical probability at which there exists
percolation cluster in a system of linear size L scales
L21/n @1#. Furthermore, by taking into account the effect
densityq, one finds that

Dpc~L,p2pc ,q!5L21/n f @~p2pc!
nL#g~q!

5 f ~0!L21/ng~q!. ~17!

Heref andg are some functions. From our numerical resu
for Dpc(L,p2pc ,q) with the snn strategy, we find that
n51.1960.03 ~Fig. 5!.

By considering the probabilityp(p,L) of finding a rigid
percolation cluster at probabilityp of additional constraints
in a system of sizeL3L, we can accurately determine th
transition probabilitypc . Plotting the probabilitypx at which
p(px ,L)5x as a function ofL21/n, we get a set of lines tha
cross atL5`, and the crossing point defines the transiti
probability pc . This kind of scaling also gives a possibilit
to determine the correlation-length exponent with data c
lapse,

p~p2pc ,L !5L21/nf@~p2pc!
nL#. ~18!

Heref(x) is again some~scaling! function.
There is also another way to independently determine

correlation-length exponent by using the number of cutt
bonds as this number should scale asL1/n @13#. For a given
network, we have used 200–2000 different realizations
the additional constraints and for a given size and density
have used 10–100 different networks. We have used size
20–250 fiber lengths with densities of 2–10 times the per
lation density. A scaling analysis~Fig. 6! gave n51.20
60.03 for all bonds andn51.1960.03 for thesnn bonds.

FIG. 5. Determination of then exponent fromDpc . The fitted
curve is 0.03L20.8460.02.
3-5
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D. Order parameter and the structure of percolation cluster

Below the transition threshold there is no rigid cluster th
would span across the system. It only appears above
transition. At exactly the transition threshold, the rigid pe
colation cluster is fractal, i.e., it scales asLD f with D f,2 if
the transition is continuous. This means that forL→` the
density of the rigid percolation cluster becomes infinite

FIG. 6. Scaling of the number of cutting bondsNred . Circles
denote the numerical results for all bonds and diamonds for thesnn
bonds. The solid line is 3.65L0.8360.02 and the dashed line
1.86L0.83760.015.
04611
t
he
-

-

mally small. So for a continuous transition, the order para
eter is zero below the transition and goes continuously
zero at the transition threshold whenL→`.

Consider next the behavior of the order parameter n
the transition threshold. Periodic boundary conditions
used in they direction and the left and right boundaries
the network are connected to rigid bars. We then place
additional fictitious bond between the two rigid bars a
monitor when this bond becomes redundant. When the fi
tious bond is recognized as redundant, there is a rigid str
bearing backbone in the network that was formed at the
step. The bonds that are recognized as redundant only a
last step are called the cutting bonds. Not one of the cut
bonds can be removed without losing the rigid stress-bea
backbone. Once the backbone is recorded, we record the
static, i.e., minimally rigid areas of the network. These are
are rigidly connected to the backbone but do not carry str
The recording of the isostatic areas is performed by check
whether a crossing point, which is not in the backbone
rigidly connected to the backbone. This is done by addin
fictitious bond between the crossing point and one of
crossing points in the rigid backbone. A rigid percolatio
cluster is shown in Fig. 7.

For a given network we have used 200–2000 differ
realizations of the additional constraints, and for a given s
and density 10–100 different realizations of the netwo
Networks of linear sizes of 20–250 fiber lengths were us
when determining the backbone, and of 16–100 fiber leng
d
s,
,
s.
FIG. 7. ~Color! A percolation
cluster at the transition point. Re
bonds denote the cutting bond
green bonds the rigid backbone
and blue bonds the isostatic area
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FIG. 8. ~a! Probability of be-
longing to the percolation cluste
at q54qc , Pf

(c) and probability to
belong to the backbonePbb

(c) .
These data givedf51.8560.3
and dbb51.8060.03. ~b! Prob-
ability of belonging to the back-
bone for 2qc<q<10qc . These
data givedbb51.7960.03.
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when determining the isostatic areas, while the densities
ied in the range 2–10 times the critical density of connec
ity percolation. Atpsn

crit the number of bonds in the back
bone, the number of cutting bonds, and the number of bo
in the isostatic parts of the network were recorded. Fr
these the fractal dimension of the backbone and the fra
dimension of the rigid percolation cluster were determin
by log-log least-squares fits. In Fig. 8~a! the probabilities of
belonging to the fractal cluster (Pf) and to the backbone
(Pbb) are plotted atp5psn

crit as functions of network size L
for q54qc . As the number of bonds in fractal cluster~back-
bone! scales asNf;Ldf(Nbb;Ldbb) and the total number o
bonds scales asN;L2, these probabilities will scale as

Pf5
Nf

N
;Ldf22~Pbb;Ldbb22! ~19!

when L→`. We find Pf50.53L0.1560.03, which gives df
51.8560.03.

In Fig. 8~b! the probability of belonging to the backbon
is plotted as a function ofL for densities 2qc<q<10qc . The
curve in this figure is a linear fit to the numerical points f
sizesL>40. This givesPbb50.58L0.2160.03 and dbb51.79
60.03. The errors are estimated from linear fits to all co
binations of three or more points through the standard de
tions of the slopes. It is evident that the backbone appea
be fractal but the asymptotic behavior could not be reac
by going to larger system sizes mainly because of difficul
with the determination of the isostatic bonds.

As the transition threshold is crossed by adding c
straints, the number of bonds in the backbone and the n
ber of bonds in the rigid percolation cluster are monitor
Thereby the order parameter can be evaluated both for
backbone and for the rigid percolation cluster. For the ri
percolation cluster only the network size of 20320 fiber
lengths was used as the determination of the isostatic a
because this calculation is time consuming. For the ba
bone, we used linear network sizes of 20–60 fiber leng
For these sizes, finding the scaling regime~between the
finite-size-dominated behavior and the constant behavio! is
04611
r-
-

ds

al
d

-
a-
to
d
s

-
-

.
he
d

as
k-
s.

always tricky. It was, however, possible to evaluate w
some accuracy the scaling regime. Close to the transi
point, the order parameter is a convex function ofp2pc ,
i.e., in a log-log plot the~local! slope of the order paramete
is close to or larger than 1. Away from the transition, t
order parameter~probability to belong to the rigid cluster!
tends to a constant~zero slope!. Hence there are crossove
from convex to scaling behavior to a constant behav
which usually makes it difficult to find the scaling regim
Considering instead the probability of ansnnbond to belong
to the percolation cluster~or the backbone!, makes the scal-
ing regime easier to detect. Now the crossovers are fr
convex to scaling to linear sinceb,bbb,1. This means that
we should look~in log-log plots! for an intermediate linear
regime in the slope. This linear regime becomes, as
pected, larger with increasing system size. We have used
average ofpsn

crit and the point of the largest slope of the ord
parameter to evaluate thepc . Both seem to give the sameb
exponent.

We have evaluated theb exponent using finite-size sca
ing of the order parameter at the average transition point
also by straightforward fits byP`;(p2pc)

b. The latter
method givesb50.1860.02 andbbb50.2360.02. The er-
rors are determined from fits to each network realization
standard deviation of the fitted exponents. In Fig. 9~a! the
probability of ansnnbond belonging to the rigid percolatio
cluster is plotted for 10 network realizations of size 20320
fiber lengths atq54qc . The scaling regime is apparent a
though quite short. The scaling functionf (z) for bbb is de-
termined by

Pbb`~p2pc ,L !5L2b/nPbb`„~p2pc!L
1/n,1…

5L2b/n f „~p2pc!L
1/n
…. ~20!

In Fig. 9~b! we use data collapse to show scaling for thesnn
bonds in the backbone. Here we usedn51.19. The best data
collapse was found forbbb50.24 while the scaling function
has a slope ofbbb50.23 in the log-log plot.
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FIG. 9. ~a! Probability of be-
longing to the percolation cluste
at q54qc as a function of (p
2pc), i.e., the order paramete
and~b! data collapse ofPbb . The
slope of the intermediate linear re
gime is quite robust and does no
depend much on thepc used, only
the position of this regime
changes aspc is changed.
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E. Number of floppy modes

In the connectivity percolation the quantity that behav
like the free energy is the number of clusters. The numbe
clusters is an extensive quantity and has the right conve
properties, i.e., its second derivative with respect to proba
ity p to occupy a site or bond is positive for allp. In the
rigidity percolation the number of rigid clusters does n
have the right convexity properties and thus cannot be c
sen as the free energy. Instead, the number of floppy mo
does have@12,14# the required properties.

The number of floppy modes is a measure of independ
motions in the network that do not cost energy. We are n
interested in what happens tod f /dp at the rigidity transition
asL→`. Using the pebble game@12# it is straightforward to
calculate the number of floppy modes for a given netw
and for a given distribution of additional constraints. In F
10 the first and the second derivatives of the number
floppy modes are plotted.

For all the fiber networks we have used 1000 differe
realizations of the additional constraints, and for a given s
and density we have used 10–500 different realizations
the fiber network. The linear sizes used have been 4–
fiber lengths and the densities 2–10 times the critical den
of connectivity percolation. As the transition threshold
crossed, the number of floppy modes and the probability
the new constraint is on an already rigid area~effectively the
first derivative of the number of floppy modes! are recorded.
These are then averaged over all the networks for the tra
04611
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tion threshold~i.e., the point of largest first derivative of th
number of floppy modes!. There are also more effectiv
ways of finding the transition point. These are already d
cussed in the earlier sections above. The exponenta was
estimated by fitting to the data the function

d f

dp
5H G1~p2pc!

12a1A~p2pc!1B, p>pc

G2~p2pc!
12a1A~p2pc!1B, p,pc .

~21!

We found thata'0.5, which has been found for centra
force rigidity percolation in diluted lattices@12#, is not in
violation with the data.

IV. CONCLUSIONS

Rigidity percolation in 2D random networks can be effe
tively studied using matching algorithms@11–13#. The tran-
sition from floppy to rigid is quite narrow, which means th
below the transition, the number of floppy modes is w
approximated by Maxwell counting. The Maxwell-countin
estimate for the transition point becomes increasingly ac
rate as the density of the network is increased. The match
algorithm@11,12# gives an accurate way to numerically es
mate the transition point.

The rigid backbone of the network is fractal at the tran
tion point. The rigid percolation cluster also appears frac
and the order parameter and the first derivative of the f
energy are continuous, which means that there is a cont
e
-

FIG. 10. ~a! The first deriva-
tive of the number of floppy
modes and~b! the second deriva-
tive of the number of floppy
modes; the solid line denotes th
estimate for the transition prob
ability psn

(c) .
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ous transition from floppy to rigid. From our numerical r
sults we have evaluated thatn51.1960.03, b50.18
60.02, bbb50.2360.02, df51.8560.03, and dbb51.79
60.03. Of these exponents,n and dbb were both evaluated
for the snn bond and the welding constraints; all others a
for the snn-bond constraints alone. Regardless of the rigi
fying strategy, the estimates for the critical exponents s
gest that the transition belongs to the universality class of
2D lattice-diluted central-force rigidity percolation. We e
pect to have determined the transition points very accura
and the exponentsn anddbb with a reliable accuracy. Othe
exponents satisfy the scaling relations with a fair accura
so we also are confident about the estimates for these e
nents. At high densities it is still not quite clear whether t
transition is continuous or not. It seems to be possible
derive eventually some analytic results in the limitq→`. At
q5` the average coordination number of the network is
and thesnn bonds play a similar role as the diagonal bon
in square lattices, so the transition might be expected to b
first order.

The main limiting factor in using the pebble game is t
amount of memory required to keep track of the pebble ga
and the network topology. We have been able to han
11 000 000 nodes or crossing points. This means a siz
2503250 fiber lengths for a density of four times that of t
connectivity-percolation threshold. The estimation of t
correlation-length exponentn and the order-parameter exp
nent b could be done quite reliably. Similarly, the fract
dimensions could be obtained with a relatively good ac
racy. The problematic exponent was the specific-heat ex
nent a. Since there are five fitting parameters (G,pc ,a,A,
andB), the fits were fairly arbitrary. All that could be said
that a'0.5, which is the exponent for 2D central-force
gidity percolation, is not in violation with the data. For th
sizes of 4–100 fiber lengths, the scaling regime for thea
exponent was quite narrow. Oncep→pc , i.e., j.L, we
o
, J

s.
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could only see the linear trend. Forup2pcu large, we could
only see thed f /dp5const regime. There must, of course,
a crossover from linear to scaling behavior to a constant,
these crossovers further complicate the finding of the sca
regime. Fitting of the free energy would require one mo
fitting parameter and hence would make the fits even m
arbitrary. One might think that one should fit instead t
second derivative but the problem there is that if the sec
derivative is calculated numerically, it is far too coarse to
fitted sensibly by any function. If one would use a Mon
Carlo method to find the second derivative directly, it wou
increase dramatically the calculation time required.

We have demonstrated that at least for low densities
with additional constraints as the driving parameters, the
gidity transition in 2D random fiber networks, with the se
ments between the crossing points considered as Ho
springs, is in the universality class of the 2D central-for
rigidity percolation. The future work could be associat
with the low-density and high-density limits. With the low
density limit we mean the case that the fibers itself are
solutely rigid and the density is the driving parameter. F
high densities, it is plausible that this problem can eventua
be mapped to the diagonal-bond square-lattice problem
ready solved.
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