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Rigidity transition in two-dimensional random fiber networks
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Rigidity percolation is analyzed in two-dimensional random fibrous networks. The model consists of central
forces between the adjacent crossing points of the fibers. Two strategies are used to incorporate rigidity: adding
extra constraints between second-nearest crossing points with a probphjlitend “welding” individual
crossing points by adding there four additional constraints with a probapjlity;, and thus fixing the angles
between the fibers. These additional constraints will make the model rigid at a critical probagjtitps" and
Pweld= pzve'd, respectively. Accurate estimates are given for the transition thresholds and for some of the
associated critical exponents. The transition is found in both cases to be in the same universality class as that

of the two-dimensional central-force rigidity percolation in diluted lattices.
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[. INTRODUCTION fibers are taken from a uniform distribution. We use periodic
boundary conditions in thg direction, and a box of linear
Scalar percolatiof1] is a simple model describing the sizel plus one fiber length in the direction to minimize the
transfer of a scalar conserved quantity, e.g., an electriboundary effects, and to keep the fiber density unchanged on
charge across a randomly diluted system. In two dimensionthe boundaries. Figure 1 shows a typical 2D random net-
the geometric exponents of connectivity percolation arevork. o _
known exactly[1,2]. Elastic percolation is not, in general, A System is rigid if it cannot be deformed without chang-
equivalent to scalar percolation. This was first discovered bynd its energy, i.e., if any small deformation of the system
Feng and Sef8]. Since then, considerable attention has beer@s & nonzero response. A system is nonrigid or floppy if it
given to the classification of rigidity transition in elastic sys- ¢an be continuously deformed without change of energy. The
tems. If angular forces are present, only singly connecteflumber of (linearly) independent motions that do not cost
paths are required for rigidity and hence the geometric propenergy is called the number of floppy modes of the system.
erties of the elastic backbone are exactly the same as those l§f @ central-force network one can write the energy of the
the scalar percolation problefa,5]. In central force systems System in the form,
[3,6—21], the singly connected paths are not enough to en-
sure rigidity. For a long time the only approach used in this 1 - a2,
problem was to directly solve the elastic equatiffs9,22— E=3 .2;’ [(ui—uy)-Ryj]%e;; . @)
24]. The concepts of rigidity percolation such as zero-energy ’
motion (or floppy modesand constraint counting, have been
used for disordered materials such as gla$2és-29. Re- X - o . :
cently, numerical algorithmématching algorithms[11—16 Vi, which is necessary for the equmb.rl_urr_] conf|gu_rat|on_ of
based on graph theory have made larger system sizes avatiﬁ‘-e network. If one .deforms the eqwhbngm configuration
able for simulation. The use of these algorithms has given gnd solves the resulting set of linear equations, the number of
new insight into the nature of the rigidity transition. Rigidity
percolation has been studied with matching algorithms in
diluted lattice§ 12—14,18,3Q) Cayley tree§18,19,21, ape-
riodic lattices[20], and random networkEl7]. Directed ri-
gidity percolation has also been studig1]. The objective
of this paper is to study the off-lattice rigidity transition in a
random network, and to classify in this case the transition.
The two-dimensional random network is a geometrical
structure. It can be used, e.g., to model planar structures that
are composed of randomly positioned thin linelike objects
(e.g., fibers in a sheet of papelhe statistical properties of
this kind of two-dimensional2D) random networks are well
known[32]. To understand the multiple connectivity of such
a random network, one can calcul@82] properties such as
the average number of crossing points per fiber, the number
of polygons in a network, and the average number of sides in
a polygon. In our model, the 2D fiber network is generated
by randomly placing 1D objects of equal length on a plane so FIG. 1. A typical 2D random network with density=2q. (see
that bothx andy coordinates and the orientation angles of thetext for the definitions ofj andq).

For the energy to be minimized, we requi#&/Ju;=0 for
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floppy modes is the number of degrees of freedom minus the
number of linearly independent constraints in the system.
Although rigidity and the rigidity transition can, in prin-
ciple, be studied with dynamical methods, rigidity is a static
property. The dynamical methods have proved to be ineffec- (b)
tive in rigidity analysis because of the restrictions
[6—9,22,23 on the size of the system that can be analyzed.
The idea of generic rigidityf12,13 solves some of these
problems. In generic rigidity the geometrical singularities,
i.e., pathological configurations, are ignored, and constraint (@
counting is used for calculating the degrees of freedom and
the number of independent constraints in the system. A ran- FIG. 2. (&) A structure in the random spring network that should
dom network is inherently generic because the random corf® made rigid(b) The second-nearest-neighbor strategy in which
struction eliminates any possibility for a geometrical singu-add'“g ofsnn bo_nds makes the vertlcal flb_er rigid against bending
larity, i.e., the probability of geometrical singularities is zero. 2nd (¢) the welding strategy in which adding of four extra bonds
The simplest argument uséd4,33 by Maxwell to check (dashed lineswill make the angles between the crossing fibers stiff.

whether a system is rigid was to calculate the number ofgje and a network constructed of triangles would be rigid.
floppy modes as the d|ffer¢nce of the degrees of freedom angacause only two fibers can cross at a single pire prob-
Fhe number of constraint§.e., all constraints are assumed ability of more than two fibers crossing at the same point is
independent If the number of floppy modes of a pegiigible, in the network constructed of springs and mass-
d-dimensional system is less than or equal to the number gfsints, rigidly connected triangles can never percolate and
collective motions of al-dimensional body, the system iS ihe network will not be rigid at any finite densifg7]. More
rigid. To map the redundant constraints, one needs to cheqi,nstraints must therefore be introduced in the network in
this property for every subset of the system. This can b qer to make it rigid.
done using recursive matching algorithms,' one version of There are several ways by which rigidity can be intro-
which, due to Jacobs and co-workg,16, is called the  qy,ced in a random spring network. Of the possible mecha-
pebble game. This algorithm calculates the number of floppyisms, one should choose those that are relevant for physical
modes, maps the overconstrained regions, and identifies aljyyjications. It would be desirable, e.g., that the structures
rigid clusters in a 2D generic bar-joint network. _such as those in Fig. 2 would be rigid. If the long vertical
We study the rigidity transition in fiber networks using jines in this figure were rigid, i.e., would not bend without
the concepts of generic rigidity. This is done to gain better.,st of energy, the structure would indeed be rigid. This can
insight into the statistical properties of the fiber networks thag,o accomplished by adding extra springs along a fitwee)
depend upon rigidity. Generic models are used to better egjeveen second-nearest-neighbor crossing points. An alter-
timate the number of floppy modes and the number of overpative strategy would be to weld crossing points, i.e., to fix
constraints or the amount of stress bearing parts in such nef;e angles between the crossing fibers at some points. The
works. In real systems that can be modeled by randomgs; of these strategies corresponds to a situation in which
networks, the amount of fibers is hugat least of the order ¢ fihers become stiff but are still able to orientate freely
of 10°), and the dynamical methods would be impossible tGejative to one another. This happens if cohesion ingite
use. The typical applications for these networks include, €.gequivalently on the surface ofhe fiber is larger than the
the mechanicdl17,32 and transporf17] properties of paper  forces hetween the fibers. The welding strategy corresponds
sheets. Here we are mainly interested in the amount of stresg 5 situation in which two bonded fibers cannot move rela-
bearing regions and in the sizes and shapes of these regiofge 1o one another but can still bend. The formation and
especially near the rigidity transition. drying of the paper web in the paper making process is a
combination of these two mechanisms but typically the ori-
entational(i.e., welding typé mechanism is dominant. Other
random networks could have a stronger tendency for stiff-
In the analysis of rigidity in 2D random fiber networks, ness. The first of these strategies turns out to be easier to
we use here a matching algorithm, more specifically théamplement for large systems. We also get better statistics for
pebble game by Jacobs and co-workgl®,16. This algo- this strategy.
rithm maps the overconstrained areas and determines the We generate a random network by randomly pladig
number of floppy modes in the system. It basically representibers of lengthl in an area ofL XL. We use as a control
the degrees of freedom in a system with pebbles. Once parameter the density of fiberg=N;/L?, and denote by,
degree of freedom is bound, a pebble is bound, and henabe density at the connectivity-percolation threshold. When a
one can keep track of the rigidity in a recursive fashion.  random network is generated, we add a simple constraint
The simplest way to realize an elastic random network isbetween each of the nearest neighbors, i.e., replace the fiber
to replace each crossing point with a mass point, which hasegments connecting the crossing points with springs. We
two degrees of freedom in two dimensions, and each nearefitst study the rigidity transition in the random spring net-
neighbor connection with a Hooke spring, i.e., a single conwork of a given density by adding there second-nearest-
straint. The simplest nontrivial rigid structure is now a tri- neighbor constraints with a probabilify,,. This will make

©)

II. METHODS

046113-2



RIGIDITY TRANSITION IN TWO-DIMENSIONAL . .. PHYSICAL REVIEW E 63 046113

the system rigid at a certain probabilipg,=pS,. The tran-  which two are always bound. Finally, every crossing point
sition probability is evaluated by checking the existence of econnects two distinct fibers so the number of unbound de-
rigid cluster that would span across the whole network fronmgrees of freedom per fiber is

left to right. This is done using a fictitious bond between the

left and right sides of the network and checking its redun- 2_”_(n_1)+4_2=3 ©)
dancy[15]. As pg, is increased, we monitor the sizes of the 2 '

rigid clusters and the change in the number of floppy modes.

When the transition probability is reached, we check theéA network without any additional constraints and with
number of cutting bonds, i.e., the bonds that cannot be refibers has 8l; unbound degrees of freedom. Every additional
moved without loss of the rigid backbone, and the sizes ofonstraint binds one degree of freedom. If we add second-
the isostatic, i.e., minimally rigid regions connected to thenearest neighbor bonds with some probabitity, there will

backbone. be
We also study the rigidity transition in the random spring .
network using the welding strategy. After generating a 2
nearest-neighbor random network, we add four additional ~h Psnl Ny )

constraints at crossing points with a probabifity.,4. These
constraints will make the system rigid pf,¢q. We evaluate  such constraints. Herg is the number of fibers with cross-
this transition probabilityp},.,q and monitor the size of the ing points. Hence the number of floppy modes,
rigid backbone as a function of linear system dize

We have checked whether the concepts of generic rigidity ”
apply by calculating the number of linearly independent con- F=3N¢— 23 Psal Ny =3N¢—Psp(r)N¢=3N¢—2psNe,
straints directly from the rigidity matrix. If one does not use "~ @)
additional constraintsi.e., only nearest neighbor bondse
number of floppy modes as calculated from the rigidity ma-where(r) is the average number of crossing points on a fiber

trix is the same(small deviations are possible by, €.g., 1-5andN, is the total number of crossing points in the network.
linearly dependent bonds, but these only constitute at most The number of crossing points i82]
0.1% of all bonds for small systems[(1-5)XL=100

— 1500 crossing pointsFor the welding strategy this is also (Nfl_)z

true for welding constraints. This gives us a reason to believe Ne=—>5,
that the concept of generic rigidity is applicable. For the 7A
second-nearest-neighbor bonds, we have to assume generic- — _ i
ity in the network, i.e., that the crossing points along a fibetVnerel is the average length of a fiber. As all the fibers have
cannot lie on the same line or they are linearly dependent. Iequal length we can sét=1 and as the density of fibers is
one assumes genericity and deviates the coordinates evérN;/A, whereA is the area of the system, we find that
slightly, the rigidity matrix and the pebble game already give

the same answers and generic rigidity is applicable. When N :w 6)
second nearest neighbors are added in straight fibers, the R

fibers are left shakyi.e., they are not first-order rigidlf we

accept the idea that the function sfin bonds is to make Hence the number of floppy modes per degree of freedom
fibers stiff, we can use in a straightforward fashion genericcan be expressed in the form

©)

rigidity. . 3 L
1= 2NgF2N) —2q 27 P
Ill. RESULTS -4 F+l
A. Maxwell counting
Psn<pSy - (7

Once we know the topology, i.e., the connectivity of a
randam network,_ we can calc_ulate its number of floppy Above the rigidity transition, the behavior &fis depen-
modes. A surprisingly good estimate for the number of un-

bound degrees of freedofiio modes is given by the dent on the end nodes since the degrees of freedom associ-
. 9 . Hroppy g y ated with these are bound only if there is @amn constraint
simple constraint counting, Maxwell counting. Maxwell

) A . . between the end node and its second-nearest neighbor. The
counting neglects the possibility of constraints being depen-

o : number of these constraints iN2pg,. As the fiber ends

dent, every constraint is assumed to bind one degree of fre%-

dom. ave N; unbound(ct)jegrees of freedom, we det2N;
If there aren crossing points on a fiber, there ara@ 2 ~2NiPsn for psy>psy and consequently,

degrees of freedom associated with these crossing points. Of

these degrees of freedom-1 are bound since there ane f= L Pen> pg‘ﬁf (8)

—1 central-force constraints on such a fiber. Each fiber has q q

two end segments. These have four degrees of freedom of
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0.16 - - - - - - It is possible to find by Maxwell counting an estimate for
d=(qmin below which there will not exist a rigid percolation
cluster. For connectivity, each fiber has one degree of free-
dom (connected or ngtand each crossing point binds one
degree of freedom. Hence, at the transition we get

0.14

S~ 012 |
N
Ni=Ne=—E = ge=m 1
o1t m
(more accurately{34], q.=5.71). This underestimates the
008 001 006 008 01 o1z o2 critical density because many fibers in the percolation cluster

Dsn atq. are multiply connected. For rigidity, each stiff fibeil
snnbonds presenthas three degrees of freeddtwo trans-

FIG. 3. Number of floppy modes at=4q.. The solid line is  |ations and a rotationand each crossing point binds two
the Maxwell-counting estimate and the dashed line the large degrees of freedom
estimate. The crossing point of these two linear trends gives a first ’

estimate for the transition point.
P 2N(q, 3

3Nf:2NC: 3qmin:§77. (12)

The number of floppy modes per degree of freedényg
plotted in Fig. 3.

Maxwell counting gives a first estimate for the transition This estimate underestimates,;,, because it supposes that
point p{9 . The two trends linear ipg,, Egs.(7) and(8),  all constraints are independent and overestimates it because

cross apg,=pL~p&, it supposes that all the degrees of freedom need to be bound
for a spanning connected network. The estintgie,= 3 7 is
3N¢—2Np%=2N;—2N;p{? (9  definitely an underestimation because tlgp,<q., Which
. is not possible. A next guess would be tlgt,= 3¢, be-
and thus we find that cause then the estimate for rigidity would fail by the same

N 1 factor as that for connectivity. Aj=q,,;, we would have
(©  n(0)_ F 9=1. So forq=2 © should bep!®=1 but Eq.(9)
~ps = = . (10 sn d=320c Psn Psn q
ST 2(Ne—Ny) 2( q ) indicatesp{%)~0.29.

—-1
a

This estimate turns out to be increasingly good for increasing B. Characterization of the rigidity transition

(Fig. 4) g. It is evident that this estimate cannot however It is still unclear under what circumstances rigidity tran-
hold at low densities. 1f§<q. (g.=5.71 being the critical sition is continuous and when it is of first order. In the Cay-
density in connectivity percolatior80]), there cannot exist a ley tree[18,19,2] and in the square lattidd.8,30 with pe-
rigid percolation cluster since there does not even exist aiodic boundary conditions, addition of diagonal bonds leads
connected percolation cluster. If, e.g>3/(27), Eq. (9)  to a transition, which is of first order. In compact 2D bond
would imply p§?<1 and we would have a rigid percolation (or site) diluted lattices, e.g., the triangular lattice, the tran-
cluster. sition seems however, to be continuous, and in a different
universality class than connectivity-percolation. At low den-
sities(above the connectivity-percolation threshdlde tran-
sition is continuous in random networks regardless of the
strategy used.

In the limit of infinite density, the random fiber network is
statistically similar to the square lattice with a dilute random
distribution of diagonal bondg32], so in this limit the tran-
sition could be expected to be of first order. The reason for
the similarity of the random fiber network and the square
lattice with diagonal bonds is that, at infinite density, their
average coordination of nearest neighbors and average coor-
PN dination of second-nearest neighbors become (the latter
vz s 6/ Tos 2 e are diluted in both strategipsAlthough the square lattice

99c with a dilute random distribution of diagonal bonds was

FIG. 4. Comparison of the Maxwell-counting estimate and theShoWn to have a first-order transitipg], it is unclear what
actual transition point evaluated numerically. The circles are thd1appens in random fiber networks at high but finite densities.
transition points and the solid line the Maxwell-counting estimate.\We have been able to reach reasonably reliable results for
The error in the transition points is smaller than the size of thedensitiesq<10q.. Higher densities are problematic because
circles. of the large number of crossing points, e.g.gat20q., a
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network of size 100 fiber lengths 100 fiber lengths has 41 0.003
million crossing points.

When analyzing the nature of a transition, an obvious
quantity to check is the free energy, i.e., whether its first
derivative is continuous or not. As the free energy associated
with the rigidity transition can be takgri4,21 the number
of floppy modes in the system. The problem with this ap-
proach is that a possible discontinuity only appears for
L—oo, If the transition is continuous, the number of floppy
modes should scale &s-|p—p.|?~ ¢, wherep is some prob- 0.0004
ability of occupying a lattice, or a density in some appropri- 20 -
ate space, so the second derivative of the floppy modes L
should in this case scale as

0.001 [

Ap./g(q)

FIG. 5. Determination of the exponent fromAp.. The fitted
d*f . curve is 0.08 084002
ap?” [p—pe . (13
) _ ) _ ~ clusters merge with the percolation cluster as additional con-
The order parameter will be discontinuous if the transitionstraints are added to the network.

is of first order. The order parametgr4] is in this case the  \ve use here an indirect way to determine the correlation-
probability to belong to a rigid percolation cluster. If the jength exponent. If the probability of finding a percolation
transition is continuous, the order parameter will scale as ¢yster at a probability of additional constraints is consid-
B ered, the correlation-length exponent can be found in two

Po~(P=Po)",  P>Pc. (14 ways. First, the highest value of the first derivative of this
usProbability scales a& ~*. On the other hand, the standard
f_deviation of the critical probability at which there exists a
percolation cluster in a system of linear size L scales as
L~ [1]. Furthermore, by taking into account the effect of
densityq, one finds that

In this case of continuous transition, the percolation cl
ter at the transition threshold will also be statistically sel
similar with fractal dimensionality;<<2. If the transition is
of first order, the percolation cluster will scale at the transi-
tion threshold with a Euclidian dimensiah=2. So for a
continuous transition, the mass of the percolation cluster at Apc(l_,p_pc,q)szl/Vf[(p_pc)yL]g(q)
the transition threshold will scale as

=f(0)L~g(q). 17)

Mp (L)~L%,  di<2. (15)

. . Heref andg are some functions. From our numerical results
Also the correlation length behaves differently near thefor Apq(L.p— ) with the snn strategy, we find that
transition threshold for a first-order and a continuous transi- Pell-.P~Pc. 9y

tion. In a continuous transition the correlation lengtldi- V:éilgino}gsr(iilg.tr?' robabilit LY of findin rigid
verges at the transition threshold such that y considering the probabil yr(p.L) ol garg
percolation cluster at probability of additional constraints

(16) in a system of sizé. XL, we can accurately determine the
transition probabilityp.. . Plotting the probabilityp, at which
m(py,L)=x as a function oL ~*"”, we get a set of lines that
cross atL =, and the crossing point defines the transition

All the results quoted here are for tean strategy unless probability p.. This kind of scaling also gives a possibility
otherwise stated. The correlation length gives the typical linto determine the correlation-length exponent with data col-
ear scale within which two mass points belong to the saméapse,

rigid cluster. It first increases with increasing number of ad-

ditional constraints as larger and larger parts of the system _ _ —1 _h\v

become constrained. For example, a square consisting of m(P=Pe L) =Ll (p=pe) L] (18

mass points connected with Hooke springs has one floppy

motion in which all the four mass points participate. Once aHere ¢(x) is again soméscaling function.

certain threshold is crossed, the redundancy of constraints There is also another way to independently determine the

becomes so high that floppy modes become isolated agatorrelation-length exponent by using the number of cutting

and the correlation length begins to decrease. This happet®nds as this number should scaleL44 [13]. For a given
when parts of the system become overconstrained or rigidhetwork, we have used 200-2000 different realizations of

On the other hand, one could also consider the size of ththe additional constraints and for a given size and density we

typical overconstrained cluster that does not belong to thé@ave used 10—-100 different networks. We have used sizes of

percolation cluster. The average size of distinct rigid cluster0—250 fiber lengths with densities of 2—10 times the perco-
first increases with increasing additional constraints butation density. A scaling analysi¢Fig. 6) gave »=1.20
when the percolation cluster is formed, the individual rigid =0.03 for all bonds and=1.19+0.03 for thesnn bonds.

E~|p—pc| .

C. Correlation length
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- mally small. So for a continuous transition, the order param-
T i bonds eter is zero below the transition and goes continuously to
2000 zero at the transition threshold when- o,
Consider next the behavior of the order parameter near
1000 - i the transition threshold. Periodic boundary conditions are
3 used in they direction and the left and right boundaries of
5004 ”@.@-@ the network are connected to rigid bars. We then place an
= Pl additional fictitious bond between the two rigid bars and
e monitor when this bond becomes redundant. When the ficti-
200 tious bond is recognized as redundant, there is a rigid stress-
bearing backbone in the network that was formed at the last
100 - | step. The bonds that are recognized as redundant only at the
b , last step are called the cutting bonds. Not one of the cutting
20 50 100 200 bonds can be removed without losing the rigid stress-bearing
L backbone. Once the backbone is recorded, we record the iso-
static, i.e., minimally rigid areas of the network. These areas
: ’ are rigidly connected to the backbone but do not carry stress.
ggggtse t'}ig”?j{écalligisﬂgs ;Oé;'ég%ggsai%d ?%aem?jgii;? mn'ﬁe The recording of the isostatic areas is performed by checking
1 84 08370015 . vyh_ether a crossing point, which is not in the backbon.e, is
: : rigidly connected to the backbone. This is done by adding a
fictitious bond between the crossing point and one of the
crossing points in the rigid backbone. A rigid percolation
Below the transition threshold there is no rigid cluster thatcluster is shown in Fig. 7.
would span across the system. It only appears above the For a given network we have used 200-2000 different
transition. At exactly the transition threshold, the rigid per-realizations of the additional constraints, and for a given size
colation cluster is fractal, i.e., it scales BSf with D;<2 if ~ and density 10-100 different realizations of the network.
the transition is continuous. This means that ffer-0 the ~ Networks of linear sizes of 20—250 fiber lengths were used
density of the rigid percolation cluster becomes infinitesi-when determining the backbone, and of 16—100 fiber lengths

Yo 1L NEE O
\L ¢ ¥ #\qgﬁ RS

red

FIG. 6. Scaling of the number of cutting bonbds.,. Circles

D. Order parameter and the structure of percolation cluster

>\ G
YA S
—TIN
AN

FIG. 7. (Color) A percolation
cluster at the transition point. Red
bonds denote the cutting bonds,
green bonds the rigid backbone,
and blue bonds the isostatic areas.
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04

FIG. 8. (a) Probability of be-
longing to the percolation cluster
atq=4q,., P{® and probability to
belong to the backboneP(?).
These data gived;=1.85+0.3
and dp,=1.80+0.03. (b) Prob-
ability of belonging to the back-
bone for Z3.<g<10q.. These
data gived,,=1.79+0.03.

0.3

0.2

10 20 50 20 50 100 200

L L
(2) (b)

when determining the isostatic areas, while the densities vaalways tricky. It was, however, possible to evaluate with
ied in the range 2—-10 times the critical density of connectiv-some accuracy the scaling regime. Close to the transition
ity percolation. AtpSh' the number of bonds in the back- point, the order parameter is a convex functionpof p.,
bone, the number of cutting bonds, and the number of bondse., in a log-log plot thelocal) slope of the order parameter
in the isostatic parts of the network were recorded. Fronis close to or larger than 1. Away from the transition, the
these the fractal dimension of the backbone and the fractairder parametefprobability to belong to the rigid cluster
dimension of the rigid percolation cluster were determinedends to a constarizero slopg Hence there are crossovers
by log-log least-squares fits. In Fig(e the probabilities of from convex to scaling behavior to a constant behavior,
belonging to the fractal clusterP¢) and to the backbone Wwhich usually makes it difficult to find the scaling regime.
(Py) are plotted ap= ng't as functions of network size L Considering instead the probability of annbond to belong
for q=4q.. As the number of bonds in fractal clustéack-  to the percolation clusteor the backbong makes the scal-
bone scales adl;~L%(N,,~L%b) and the total number of ing regime easier to detect. Now the crossovers are from
bonds scales ad~L?, these probabilities will scale as convex to scaling to linear singe, Bpp<1. This means that
we should look(in log-log plot9 for an intermediate linear
regime in the slope. This linear regime becomes, as ex-
pected, larger with increasing system size. We have used the
average opSl' and the point of the largest slope of the order
when L—o. We find P;=0.53.915°093 \which givesd; parameter to evaluate the . Both seem to give the sang
=1.85+0.03. exponent.

In Fig. 8b) the probability of belonging to the backbone We have evaluated thé exponent using finite-size scal-
is plotted as a function df for densities 2.<q<10q.. The ing of the order parameter at the average transition point and
curve in this figure is a linear fit to the numerical points for also by straightforward fits byP..~(p—p.)”. The latter
sizesL=40. This givesP,,=0.58.92%% andd,,=1.79 method gives3=0.18+0.02 andBy,,=0.23+0.02. The er-
+0.03. The errors are estimated from linear fits to all com~ors are determined from fits to each network realization by
binations of three or more points through the standard deviastandard deviation of the fitted exponents. In Fi¢a) Ghe
tions of the slopes. It is evident that the backbone appears ferobability of ansnnbond belonging to the rigid percolation
be fractal but the asymptotic behavior could not be reachegluster is plotted for 10 network realizations of sizexZD
by going to larger system sizes mainly because of difficultiediber lengths ag=4q.. The scaling regime is apparent al-
with the determination of the isostatic bonds. though quite short. The scaling functid(z) for By, is de-

As the transition threshold is crossed by adding coniermined by
straints, the number of bonds in the backbone and the num-
ber of bonds in the rigid percolation cluster are monitored. aly Y
Thereby the order parameter can be evaluated both for the Pob=(P~Pe, L) =L Ppp (p—pe) LM, D)
backbon_e and for the rigid percolation c_:Iuster. For t_he rigid =LA ((p—po)LY). (20)
percolation cluster only the network size of 200 fiber
lengths was used as the determination of the isostatic areas
because this calculation is time consuming. For the backh Fig. 9b) we use data collapse to show scaling for $imen
bone, we used linear network sizes of 20—60 fiber lengthshonds in the backbone. Here we used1.19. The best data
For these sizes, finding the scaling regirtteetween the collapse was found foB,,=0.24 while the scaling function
finite-size-dominated behavior and the constant behpigor has a slope of3,,=0.23 in the log-log plot.

N
Pi= LY 2(PppL%0?) (19
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' o L0
s L=30
o L=50
02f ° L=60
FIG. 9. (a) Probability of be-
2 . .
0.1F s longing to the percolation cluster
2 ~ at q=4q. as a function of p
=~ 3 i
[ R —pe), i.e., the order parameter
0.09 Qf and (b) data collapse oP,,. The
slope of the intermediate linear re-
25 gime is quite robust and does not
0.08 o1l OOAJ? ° | depend much on the, used, only
$ . 00’9 N . the position of this regime
0005 001 002 ' 005 01 02 05 1 changes ag. is changed.
P-DPc 1
(p'pc)L
(@) (b)
E. Number of floppy modes tion threshold(i.e., the point of largest first derivative of the

In the connectivity percolation the quantity that behaved!Umber of floppy modes There are also more effective
like the free energy is the number of clusters. The number of/@ys of finding the transition point. These are already dis-
clusters is an extensive quantity and has the right convexitfuSsed in the earlier sections above. The expomemias
properties, i.e., its second derivative with respect to probabileStimated by fitting to the data the function
ity p to occupy a site or bond is positive for gl In the l-a _
rigidity percolation the number of rigid clusters does not ﬂ: Fi(p=po) “+A(P=P) +B,  p=p
have the right convexity properties and thus cannot be cho- ~ dp [T _(p—po)'” “+A(p—pc)+B, p<pc.
sen as the free energy. Instead, the number of floppy modes
does havd 12,14 the required properties. We found thata~0.5, which has been found for central-

The number of floppy modes is a measure of independerforce rigidity percolation in diluted latticegl2], is not in
motions in the network that do not cost energy. We are nowiolation with the data.
interested in what happens did/d p at the rigidity transition
asL—oo. Using the pebble gan{d2] it is straightforward to
calculate the number of floppy modes for a given network
and for a given distribution of additional constraints. In Fig.  Rigidity percolation in 2D random networks can be effec-
10 the first and the second derivatives of the number ofively studied using matching algorithmi$1—13. The tran-
floppy modes are plotted. sition from floppy to rigid is quite narrow, which means that

For all the fiber networks we have used 1000 differentbelow the transition, the number of floppy modes is well
realizations of the additional constraints, and for a given sizepproximated by Maxwell counting. The Maxwell-counting
and density we have used 10-500 different realizations ostimate for the transition point becomes increasingly accu-
the fiber network. The linear sizes used have been 4-10fate as the density of the network is increased. The matching
fiber lengths and the densities 2—10 times the critical densitplgorithm[11,12) gives an accurate way to numerically esti-
of connectivity percolation. As the transition threshold ismate the transition point.
crossed, the number of floppy modes and the probability that The rigid backbone of the network is fractal at the transi-
the new constraint is on an already rigid ateffectively the tion point. The rigid percolation cluster also appears fractal,
first derivative of the number of floppy modesre recorded. and the order parameter and the first derivative of the free
These are then averaged over all the networks for the transenergy are continuous, which means that there is a continu-

(21)

IV. CONCLUSIONS

-0.1 T T T T T T T 45

02t 1 40 -

03 s

04l o 0T FIG. 10. (& The first deriva-

& St tive of the number of floppy

g'\\ 0.5 “\\ .

B LY modes andb) the second deriva-
06 15+ tive of the number of floppy
07t 1 w0l 5 ] modes; the solid line denotes the
08} ] S| ’ ] estimate for the transition prob-
ol g NI ability p{¢).

“00 002 004 006 008 01 012 014 0.16 00 002 004 006 008 01 012 014 0.16
(@ (b)
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ous transition from floppy to rigid. From our numerical re- could only see the linear trend. Fig—p.| large, we could
sults we have evaluated that=1.19-0.03, 8=0.18 only see thalf/dp=const regime. There must, of course, be
+0.02, Bpp,=0.23+-0.02, d;=1.85+0.03, andd,,=1.79 a crossover from linear to scaling behavior to a constant, and
+0.03. Of these exponents,andd,;, were both evaluated these crossovers further complicate the finding of the scaling
for the snn bond and the welding constraints; all others areregime. Fitting of the free energy would require one more
fying strategy, the estimates for the critical exponents sugarbitrary. One might think that one should fit instead the
gest that the transition belongs to the universality class of theecond derivative but the problem there is that if the second
2D lattice-diluted central-force rigidity percolation. We ex- derivative is calculated numerically, it is far too coarse to be
pect to have determined the transition points very accuratelfitted sensibly by any function. If one would use a Monte
and the exponents andd,;, with a reliable accuracy. Other Carlo method to find the second derivative directly, it would
exponents satisfy the scaling relations with a fair accuracyincrease dramatically the calculation time required.
so we also are confident about the estimates for these expo- We have demonstrated that at least for low densities and
nents. At high densities it is still not quite clear whether thewith additional constraints as the driving parameters, the ri-
transition is continuous or not. It seems to be possible t@idity transition in 2D random fiber networks, with the seg-
derive eventually some analytic results in the ligpit-oc. At ~ ments between the crossing points considered as Hooke
gq=0° the average coordination number of the network is 4springs, is in the universality class of the 2D central-force
and thesnnbonds play a similar role as the diagonal bondsrigidity percolation. The future work could be associated
in square lattices, so the transition might be expected to be ofith the low-density and high-density limits. With the low-
first order. density limit we mean the case that the fibers itself are ab-
The main limiting factor in using the pebble game is thesolutely rigid and the density is the driving parameter. For
amount of memory required to keep track of the pebble gambigh densities, it is plausible that this problem can eventually
and the network topology. We have been able to handlée mapped to the diagonal-bond square-lattice problem al-
11 000 000 nodes or crossing points. This means a size ¢gady solved.
250x 250 fiber lengths for a density of four times that of the
connectivity-percolation threshold. The estimation of the
correlation-length exponent and the order-parameter expo-
nent 8 could be done quite reliably. Similarly, the fractal = We would like to thank Michael Thorpe for his interesting
dimensions could be obtained with a relatively good accusuggestions and for the Jacobs-Thorpe “pebble game” code.
racy. The problematic exponent was the specific-heat expdA/e would also like to thank Cristian Moukarzel for fruitful
nent «. Since there are five fitting parameteis, ., «,A, discussions. The contribution to this work by Markku Kello-
andB), the fits were fairly arbitrary. All that could be said is maki is also acknowledged. This work has been supported by
that a~0.5, which is the exponent for 2D central-force ri- the Academy of Finland under the Finnish Center of Excel-
gidity percolation, is not in violation with the data. For the lence Programme 2000-200®Project No. 44875, Nuclear
sizes of 4-100 fiber lengths, the scaling regime for the and Condensed Matter Programme at JYBhd under the
exponent was quite narrow. Onge—p., i.e., £>L, we  Matra ProgramméProject No. 16498
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